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a b s t r a c t

Problems of the stability (buckling) of compressed rectangular plates are considered. It is assumed that
evenly distributed compressive forces are applied to the opposite hinged edges, while the remaining two
edges are not fastened and are free from external actions. It is shown that an increase in the length ratio
of the hinged and unfastened sides in close proximity to the free boundary results in the localization of
eigenforms corresponding to the lowest eigenvalues.
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In problems of the elastic stability (buckling) of infinitely long rectangular plates (panels) hinged along their long sides and exposed
to unvarying compressive forces over their length, it is normal to assume that the deflection function corresponds to a cylindrical surface.
This enables the solution of the two-dimensional problem of the loss of stability of a narrow strip to be replaced by the solution of the
corresponding one-dimensional problem. However, this replacement, as first shown by Ishlinskii1 (see also Refs. [2–4]), is not entirely
rigorous and does not result in an adequate description of the loss of stability of long rectangular plates. An analysis of the analytical
solution of the two-dimensional problem for a plate with a finite side length ratio and a subsequent limit transition as the plate length
tends to infinity indicate that the critical force of loss of stability (the minimum eigennumber) differs by a finite amount from the critical
force of compression that is obtained in the one-dimensional problem. A similar feature of the limit transition and a discrepancy between
the solutions of the two- and one-dimensional problems can be seen in the problem of the free oscillations of a plate under the same
conditions of fastening of its boundaries.4

The boundary-value problems of the loss of stability of long rectangular plates investigated, represented in dimensionless form, contain
a small parameter at the highest derivative and can be classified as singularly perturbed boundary-value problems5; similar problems
were considered earlier.6 The solutions of these problems are characterized by an abrupt change in close proximity to the boundaries. In
singularly perturbed eigenvalue problems of loss of elastic stability, the behaviour of the eigenforms can be expected to possess similar
features.

Below, the problems, considered earlier,4 of loss of stability and of free oscillations of elastic rectangular plates are investigated, and
an asymptotic analysis of the solutions obtained is carried out. This enables additional features of the spectrum of eigenvalues and the
behaviour of eigenforms as a function of the plate side ratio to be established.

1. Formulation of the problem of elastic stability and presentation of the solutions

The stability of an elastic rectangular plate with free lateral sides of length l and hinged sides of length 2b will be examined. Evenly
distributed compressive forces of magnitude p are applied to the hinged edges. Finding the critical load at which the plate loses its stability
and bulges reduces to finding the minimum eigenvalue p and the corresponding eigenfunction (form of loss of stability) w = w(x, y) from
the solution of the following eigenvalue boundary-value problem

(1.1)
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(1.2)

(1.3)

for the equation of the lateral flexure (1.1) with the boundary conditions of support (1.2) and the boundary conditions of the absence of
moments and shearing-forces on the free edges (1.3). Here, D = Eh3/[12(1 − �2)] is the cylindrical stiffness of the plate, h is its thickness,
E and � are Young’s modulus and Poisson’s ratio of the material and �2 is a biharmonic operator. The subscripts x and y denote partial
derivatives with respect to the corresponding variables.

The solution of problem (1.1)–(1.3) will be sought in the form1

(1.4)

where f(y) is the desired function. Eq. (1.4) shows that the function w(x, y) satisfies the boundary conditions of support (1.2). The boundary-
value problem for finding the function f(y) is obtained by substituting expression (1.4) into Eq. (1.1) and conditions (1.3), and in dimensionless
quantities

(1.5)

(the tilde is omitted below) is written in the form

(1.6)

The eigenvalue boundary-value problem (1.6) is invariant under to the operation of symmetry y → −y, and consequently the eigenforms
(EFs) can be classified according to evenness:

(1.7)

where fs and fa are symmetric and antisymmetric EFs about to the x axis.
Using relation (1.6), we obtain general representations for the functions fs(y) and linear algebraic equations for determining the constants

As and Bs

(1.8)

(1.9)

The conditions for a non-trivial solution to exist in the form of (1.8) and (1.9), which reduce to the determinant of the homogeneous system
(1.9) vanishing, are written in the form of a transcendental equation

(1.10)

which can be used to determine the eigenvalues � = �2 corresponding to symmetric EFs with different values of the parameter � = �/(�b).
Similarly, using relations (1.6) and (1.7), we can obtain representations for antisymmetric EFs fa(y), equations for determining the corre-

sponding constants Aa and Ba and the transcendental equation �a(�, �) = 0 for determining the eigenvalues corresponding to antisymmetric
EFs. These representations and equations differ from (1.8)–(1.10) in the replacement ch → sh and sh → ch.

2. Asymptotic analysis of symmetric eigenforms and corresponding eigenvalues

Below we will investigate the solutions of eigenvalue problem (1.6) for long plates, i.e. for small values of the parameter �, and the limit
transition as � → 0. Note that when 0 ≤ � � 1 and for any � ≥ 0

(2.1)

and the transcendental equation for determining the eigenvalues (1.10), taking into account the asymptotic representation

(which holds for large values of the argument), will take the form

(2.2)

We will investigate separately the versions of arrangement of the eigenvalues in the intervals 0 ≤ � ≤ 1 and � > 1.
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We will first consider the case where 0 ≤ � ≤ 1. Note that, when � �= 0, the value � = 1 does not satisfy Eq. (1.9), i.e., it is not the eigenvalue
corresponding to the symmetric eigenfunction. The equation �s(�, �) = 0 defines a certain dependence �(�) and thereby also determines
the limit behaviour of the function �−(�)/� =

√
1 − �(�)/� as � → 0.

We will consider three versions of the limit behaviour of this function:

For the first two versions we have

which contradicts Eq. (2.2). The third version means that

and here �(�) ≤ �0 when � ≥ 0 (see Ref. 4). To find the value of � with exponential accuracy, we have th(�−/�) ≈ 1, and as a result we arrive
at an algebraic equation, the solution of which4 is

(2.3)

The value of �0 found earlier1 turns out to be close to unity and lower than for antisymmetric forms.4 For the values of Poisson’s ratio
� = 0.2, 0.3 and 0.5, we have � = �2

0 = 0.9994, 0.9962 and 0.9571.
The symmetric EFs fs(y) corresponding to the eigenvalues �(�) ≤ �0 < 1 are obtained using relations (1.8) and (1.9). We have

(2.4)

where C is an arbitrary constant. Since

expression (2.4) can be represented with exponential accuracy in the form

(2.5)

Thus, as � decreases, localization of symmetric EFs occurs in the vicinity of the free sides, i.e., as y → ±1.
Now consider the case where � > 1. The condition for determining the eigenvalues and the expression for the corresponding symmetric

EFs are obtained from relations (1.8), (1.10) and (2.4), taking into account the relations

and are written in real form

(2.6)

(2.7)

For small values of �, Eq. (2.6) can be represented with exponential accuracy in the form

(2.8)

We will obtain an asymptotic representation for the relation �(�) defined by Eq. (2.8). To this end, we introduce a new variable �:

(2.9)

and transform Eq. (2.8) in the following way

(2.10)
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Note that � = 0 does not satisfy Eq. (2.10), and when � = 0 this equation has the solutions �k = (2k − 1)�/2 (k = 1, 2, . . .), in accordance with
which the solution of Eq. (2.10) is found in the form

(2.11)

We will determine the asymptotic behaviour of 	k(�) for small values of the parameter � (0 ≤ � � 1) by substituting expression (2.1) into
Eq. (2.10). We will then have

Thus, we arrive at the following expression for the dependence of the eigenvalue �k on the parameter � when � � 1

(2.12)

The expression for the symmetric EFs corresponding to eigenvalues �k(�) can be obtained with any required accuracy by substituting
expressions (2.9) and (2.11) into Eq. (2.7). Making asymptotic estimates with an accuracy to terms O(�2), we arrive at the following
asymptotic representations for the EFs

(2.13)

The first term in the square brackets decays exponentially with distance from the free edges of the plate (y = ±1). Note also that, for k = 1,
in the zero approximation with respect to �, the EF has the form

(2.14)

which corresponds to the EF of the loss of stability of a plate hinged along its lateral sides.

3. Asymptotic analysis of antisymmetric eigenforms and corresponding eigenvalues

We will now consider the equation for determining the eigenvalues corresponding to antisymmetric EFs. For small values of �, i.e., when
condition (2.1) is satisfied, this equation is written approximately in a form differing from (2.2) in that th(�−/�) is replaced by cth(�−�).

The subsequent analysis is similar to the analysis of symmetric EFs and the corresponding eigenvalues (see Section 2). We will give the
final results.

An antisymmetric EF is localized in close proximity to the edges y = ±1 in a similar manner to symmetric EFs when 0 ≤ �(�) ≤ 1. When
� > 1 we obtain an asymptotic representation of the relation �(�) defined by the equation �a(�, �) = 0. For this, we introduce a new variable
� according to Eq. (2.9) and write the equation in the form

(3.1)

Note that a zero EF corresponds to the solution � = 0. A non-zero solution of Eq. (3.1) is found in the form

When � = 0, Eq. (3.1) has the solution �k(0) = k� (k = 1, 2, . . .), and consequently 	k(0) = 0 (k = 1, 2, . . .). For small values of �, from Eq. (3.1),
with an accuracy up to linear terms in �, we will have

(3.2)

When k = 1, we have �1(�) ≈ � and �a(�) = 1 + (�a(�))2 ≈ 1 + �2�2, while for a symmetric EF

(3.3)

In conclusion, note that all the relations obtained in analysing the stability remain unchanged in the problem of free transverse oscilla-
tions of a rectangular elastic plate with the appropriate replacement of the parameters of the problem. Consequently, in the case of elastic
vibrations also, localization of the eigenforms in the vicinity of the free boundaries occurs.
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